Quantitative characterization of disparity tuning in ventral pathway area V4.
نویسندگان
چکیده
We performed a quantitative characterization of binocular disparity-tuning functions in the ventral (object-processing) pathway of the macaque visual cortex. We measured responses of 452 area V4 neurons to stimuli with disparities ranging from -1.0 to +1.0 degrees. Asymmetric Gaussian functions fit the raw data best (median R = 0.90), capturing both the modal components (local peaks in the -1.0 to +1.0 degrees range) and the monotonic components (linear or sigmoidal dependency on disparity) of the tuning patterns. Values derived from the asymmetric Gaussian fits were used to characterize neurons on a modal x monotonic tuning domain. Points along the modal tuning axis correspond to classic tuned excitatory and inhibitory patterns; points along the monotonic axis correspond to classic near and far patterns. The distribution on this domain was continuous, with the majority of neurons exhibiting a mixed modal/monotonic tuning pattern. The distribution in the modal dimension was shifted toward excitatory patterns, consistent with previous results in other areas. The distribution in the monotonic dimension was shifted toward tuning for crossed disparities (corresponding to stimuli nearer than the fixation plane). This could reflect a perceptual emphasis on objects or object parts closer to the observer. We also found that disparity-tuning strength was positively correlated with orientation-tuning strength and color-tuning strength, and negatively correlated with receptive field eccentricity.
منابع مشابه
Disparity-selective neurons in area V4 of macaque monkeys.
Area V4 is an intermediate stage of the ventral visual pathway providing major input to the final stages in the inferior temporal cortex (IT). This pathway is involved in the processing of shape, color, and texture. IT neurons are also sensitive to horizontal binocular disparity, suggesting that binocular disparity is processed along the ventral visual pathway. In the present study, we examined...
متن کاملStimulus dependence of disparity coding in primate visual area V4.
Disparity tuning in visual cortex has been shown using a variety of stimulus types that contain stereoscopic depth cues. It is not known whether different stimuli yield similar disparity tuning curves. We studied whether cells in visual area V4 of the macaque show similar disparity tuning profiles when the same set of disparity values were tested using bars or dynamic random dot stereograms, wh...
متن کاملRepresentation of stereoscopic depth based on relative disparity in macaque area V4.
Stereoscopic vision is characterized by greater visual acuity when a background feature serves as a reference. When a reference is present, the perceived depth of an object is predominantly dependent on this reference. Neural representations of stereoscopic depth are expected to have a relative frame of reference. The conversion of absolute disparity encoded in area V1 to relative disparity beg...
متن کاملCurvature processing dynamics in macaque area V4.
We have previously analyzed shape processing dynamics in macaque monkey posterior inferotemporal cortex (PIT). We described how early PIT responses to individual contour fragments evolve into tuning for multifragment shape configurations. Here, we analyzed curvature processing dynamics in area V4, which provides feedforward inputs to PIT. We contrasted 2 hypotheses: 1) that V4 curvature tuning ...
متن کاملA model of V4 shape selectivity and invariance.
Object recognition in primates is mediated by the ventral visual pathway and is classically described as a feedforward hierarchy of increasingly sophisticated representations. Neurons in macaque monkey area V4, an intermediate stage along the ventral pathway, have been shown to exhibit selectivity to complex boundary conformation and invariance to spatial translation. How could such a represent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 94 4 شماره
صفحات -
تاریخ انتشار 2005